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Abstract. Motivated by Haldane’s exclusion statistics, we construct creation and annihilation
operators forg-ons using a bosonic algebra. We find thatg-ons appear due to the breaking of
a discrete symmetry of the original bosonic system. This symmetry is intimately related to the
braid group and we demonstrate a link between exclusion statistics and fractional statistics.

In 1991 Haldane proposed that excitations which obey fractional statistics may exist in
certain condensed matter systems even in dimensions other than two [1]. This was based
on his observation that such excitations are present in the Calogero–Sutherland model [2–4].
For these excitations, which were dubbed ‘g-ons’ by Nayak and Wilczek [5], he proposed
that the number of available one-particle states changes with increasing occupation of the
state. Namely, ifd is the number of one-particle states available for the particle andN is
its occupation number, then

1d = −g1N (1)

whereg determines the statistics of the particle. Since the number of one-particle states
for bosons does not change withN , g = 0 for bosons. For fermions, on the other hand,
the number of available one-particle states decreases by one with the addition of even one
fermion, giving ag = 1. This definition of statistics has the advantage of making no specific
reference to the dimensionality of the system which is being studied while the usual notion
of fractional statistics is often made in reference to anyons [6] which traditionally have only
been present in two spatial dimensions. We also note that excitations which have ‘fractional
charge’ have had a long history in both high energy physics and condensed matter physics.
An explicit example of such excitations can be found in the massive Thirring model in
two dimensions [7]. Moreover, the notion of particles having fractional charge and obeying
parastatistics have been postulated in high energy physics in connection with the quark
model of hadrons since the 1960s (see [8] for a thorough review).

Since Haldane’s work there have been a number of papers advancing his ideas [5, 9–15]
using thermodynamic arguments. This was done primarily by using the second of Haldane’s
proposals: that the dimensionality of the Hilbert space ofN g-ons is

D = [d + (1− g)(N − 1)]!

N ![d − 1− g(N − 1)]!
. (2)
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Applying the ground breaking work of Yang and Yang [16] who first noticed that the number
of available one-particle states can differ depending on dynamics, equation (2) was used
to construct a partition function forg-ons. (See also [17] for a review of this technique
as applied to Haldane’s fractional statistics.) This was then compared with the partition
function of various known systems. Using this argument Murthy and Shanker [11] were
able to show that anyons also obey exclusion statistics.

In another approach, Karabali and Nair [18] have recently attempted to use operator
methods to realize exclusion statistics algebraically (see also [19] and [20]). Specifically,
they proposed the existence of creation and annihilation operatorsã and ã† for g-ons
by requiring thatãm+1 = 0. The resultant Hilbert space is therefore finite-dimensional
containing at mostm possible occupation states. As the system looses a one-particle
Hilbert space as soon as the occupation number for the state changes bym, g = 1/m.
Althoughm(1/g) is necessarily an integer, since Nayak and Wilczek have shown that the
thermodynamical distribution functions forg and 1/g are related by a duality property, this
limitation does not seem to be to troublesome. Of greater concern is that since a specific
representation of these operators was not known, the resulting commutation relations forã

and ã† could not be determined uniquely.
In this paper we shall extend Karabali and Nair’s analysis by constructing explicitly the

creation and annihilation operators forg-ons using a bosonic algebra. Since a(1/2)-on is
a fermion, as a byproduct of our analysis we have a procedure for changing a boson into
a fermion (or in general ag-on). Turning bosons into fermions or fermions into bosons,
the process of bosonization, is well-known in field theory ([21–24]; see also [25]). Instead
of using the normal field theoretic methods, however, we use the bosonic number operator
to define an operator whose eigenvalues are abelian representations of the braid group,
commonly identified as the ‘statistics phases’ for anyons [6]. Projection operators are then
constructed which project states of the bosonic Hilbert spaceH into states with definite
statistics phase. These projection operators are then used to define theg-on creation and
annihilation operators. We shall further see from this construction thatg-ons appear in
the bosonic system as the result of the breaking of a discrete symmetry of the original
bosonic Hilbert space. In the spirit of Haldane’s original work, this analysis is donewithout
reference to any specific spacetime dimension.

Some of the techniques of this paper have previously been applied in various forms to
different systems. Brandt and Greenberg [26] have used a similar technique to construct
generalized bose operators which change the occupation number of a state by any positive
integer. Agranovich and Toshich [27] used a similar method to construct creation and
annihilation operators for Paulions, which was later generalized by Ilinskaia and Ilinski
[28].

Denoting the usual bosonic operators bya anda† and their number operator byN = a†a,
we begin with the unitary operator

Bm ≡ exp

(
2π i

m+ 1
N

)
(3)

wherem is a non-negative integer. One can easily show that

BmaB
†
m = e−2π i/(m+1)a Bma†B†m = e2π i/(m+1)a†. (4)

Consequently, [a, B0] = 0= [a†, B0], andB0 commutes with every operator in the algebra
generated bya and a†. It is therefore (a Casimir operator) proportional to the identity
operator I. Since the eigenvalues ofN are the non-negative integers, this proportionality
constant is simply unity. This is a special case of the more general result: iff (x) is a
periodic, analytic function, then [a, f (N)] = 0 andf (N) = f (0)I.
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Now considerBm for m > 0 which has eigenvalues

e2π ij/(m+1) (5)

that are them+ 1 roots of unity. Since only the ratioj/(m + 1) matters, it is understood
from now on that 06 j 6 m. It is also known that for a fixed value ofj/(m + 1),
equation (5) is a one-dimensional (abelian) representation of the braid group e−iπν if one
identifiesν = −2j/(m+1) [6] (up to an even integer). In this context, equation (5) is often
also called the ‘statistics phase’ of an anyon. Consequently, we shall callBm the quantum
braid operator.

Next, Bm|j + (m + 1)q〉 = e2π ij/(m+1)|j + (m + 1)q〉, where |n〉 is a state inH and
q > 0 is an arbitrary integer. The bosonic Hilbert spaceH is also spanned by eigenstates
of Bm. These states can be isolated by using the projection operators

Pmj =
1

m+ 1

m∑
k=0

exp

(
2π ik

m+ 1
(N − j)

)
(6)

which have the properties

Pmj
† = Pmj Pmj P

m
k = Pmj δj,k

m∑
j=0

Pmj = I (7)

andPmj±(m+1) = Pmj . It is easily seen thatPmj |n + (m + 1)q〉 = δj,n|n + (m + 1)q〉 and
the original Hilbert space decomposes intoH = H0 ⊕ · · · ⊕ Hm. Each state inHj is an
eigenstate ofBm with eigenvalue (5) and has a definite statistics phase.

We then usePmj to form the composite operators

emj ≡ aPmj e
m†
j ≡ Pmj a† (8)

where 06 j 6 m. Using equation (4),

Pmj a = aPmj+1 Pmj a
† = a†Pmj−1 (9)

and we find that

emj e
m
k = emj emj+1δk,j+1 e

m†
k e

m†
j = em†j+1e

m†
j δk,j+1 {emj , em

†

k } = T mj δj,k
[T mj , T

m
k ] = 0 (10)

while

[emj , T
m
j+1] = emj + emj Ne

j [emj , T
m
j−1] = −Ne

j−1e
m
j (11)

and [emj , T
m
k ] = 0 for |j − k| 6= 1. Ne

j ≡ emj †emj ,N =
∑
j N

e
j and [Ne

j , T
m
k ] = 0. Written

in this way the original background bosonic operators do not explicitly appear, the algebra
closes and no other operators need to be introduced. Theseemj will be used to construct
the creation and annihilation operators forg-ons and their resultant Hilbert spaces. To
demonstrate that the commutation relations (10) are sufficient to determine theg-on Hilbert
space up to an overall constant, we shall make no further reference to the underlying bosonic
algebra.

In general, the creation and annihilation operatorsamj andamj
† for (g = 1/m)-ons are

defined by

amj =
m∑
k=1

emj+k (12)
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and we see that(amj )
m+1 = 0. The(1/m)-on Hilbert space ism-dimensional and spanned

by the states

|p〉mj =
(amj

†)p|�〉mj√
λmj+1(λ

m
j+1+ 1) . . . (λmj+1+ p − 1)

(13)

for 1 6 p 6 m with the ground state being|�〉mj . They are eigenstates of the(1/m)-on
number operatorNm

j with eigenvaluesλmj+1 + p, as well as ofT mj+1|p〉mj = λmj+1δp,1|p〉mj .
Once againλmj+1 > 0 is an arbitrary constant which, becauseT mj+1|�〉mj = λmj+1|�〉mj ,
ultimately depends on the ground state of the system. For the underlying bosonic Hilbert
space,λmj+1 = j + 1+ (m+ 1)q.

Form = 1, we have only the one operatora1
0 ≡ e1

1. Then from equation (10),(a1
0)

2 = 0

and {a1
0, a

1
0
†} = T 1

1 . Since, however, [a1
0, T

1
1 ] = 0, if we restrict ourselves to only those

operators and Hilbert space generated bya1
0 anda1

0
†
, thenT 1

1 is once again a multiple of

the identity which can be set to unity by re-scalinga1
0. a1

0 anda1
0
†

therefore obey the usual
fermionic anticommutationrelations and generate a fermionic Hilbert space.

Even though we still have the operatore1
0, no other interesting operator can be

constructed form = 1 aside for the trivial replacement ofe1
0 ↔ e1

1. Once e1
0 is also

included in the sub-algebra the complete bosonic Hilbert space will be reconstructed as can
be seen from the completeness relation in equation (7). We will no longer be projectingH

into a sub-Hilbert space with a definite statistics phase. This is a reflection of the very well
known result that form = 1 the statistics phase is±1 and only fermions or bosons can be
present.

Form = 2 we construct the creation and annihilation operators for(1/2)-ons by taking,
for an arbitrary but fixedj ,

a2
j = e2

j+1+ e2
j+2. (14)

(a2
j )

3 = 0, as can easily be seen from the commutation relations. To construct the Hilbert
space, we take|�〉2j as the ground state. It is an eigenstate of bothT 2

j+1 and T 2
j+2 with

eigenvaluesλ2
j+1 and λ2

j+2, respectively. This is possible because both these operators

commute among themselves as well as the(1/2)-on number operatorN2
j ≡ a2

j

†
a2
j . Then,

becausee2
j+2e

2
j+1 = 0, one can show thatλ2

j+2 = 0. The (1/2)-on Hilbert space is then
spanned by the normalized states

|�〉2j
a2
j

†√
λ2
j+1

|�〉2j
(a2
j

†
)2|�〉2j√

λ2
j+1(λ

2
j+1+ 1)

. (15)

They are eigenstates ofN2
j = a2

j

†
a2
j with eigenvalues 0,λ2

j+1 andλ2
j+1 + 1, respectively,

and of T 2
j+1 with eigenvaluesλ2

j+1, λ
2
j+1, and 0. The constantλ2

j+1 > 0 itself cannot be
determined by equation (10) alone. However, using the underlying bosonic Hilbert space
we find thatλ2

j+1 = j + 1+ 3q.
In them→∞ limit, equation (12) becomes an infinite sum, and we find that(a∞j )

l 6= 0
for any finite l. Using standard arguments we can show thatλ∞j+1 = 1 and we simply
recover the usual bosonic algebra and Hilbert space. This can also be seen heuristically
from equation (5), by looking at the spectrum ofBm for finite m and takingm→∞. We
therefore identifyB∞ = I and note thatB0 = B∞.

Bm|p〉m = e2π ip/(m+1)|p〉m for a Bm invariant ground state. Each(1/m)-on occupation
state is an eigenstate of the braid operator with the state containingp of the(1/m)-ons having
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a statistics phase e2π ip/(m+1). Each(1/m)-on thereby has a statistics phase of e2π i/(m+1).
Form = 1 this is just−1, as expected for fermions, while form→∞ it is 1, as expected
for bosons.

We can understand the physics behind this construction ofg-ons by using the following
symmetry arguments. We first introduce the notion ofBm-parity, which like the usual
parity P is a discrete symmetry and is generated byBm. Since, however,Bm+1

m = I,
the eigenvalues ofBm are in general complex whileP is a Z2 symmetry. The original
bosonic system is, of course,Bm-parity invariant andH itself is spanned by states with
definiteBm-parity. In the construction of theg-on operatorsamj , amj

†, however, only the
projection operatorsPmj+1, . . . , P

m
j+m were used.Pmj itself was purposely left out. In effect,

amj represents the projection of any bosonic state into am-dimensional subspace spanned
by these projection operators after whicha is applied. Bm-parity is explicitly broken by
hand and the states|j + (m + 1)q〉 that Pmj projects into forms the ground state|�〉mj for
theg-on Hilbert space. The choice of ground state for theg-ons is not unique and there are
an infinite number of ground states which can be used to generate the Hilbert space, each
corresponding to a differentλmj+1. These ground states arenot equivalent, however, since
the eigenvalues ofNm

j areλmj+1 are dependent.
Since the eigenvalues ofBm are in general complex,Bm is not a physical observable for

m > 1. Its effect on the bosonic Hilbert space is nevertheless dramatic and observable. The
breaking of this discrete symmetry reduces the infinite-dimensional bosonic Hilbert space
into the finite-dimensionalg-on Hilbert space. Indeed, the presence ofg-ons in the system
occurs precisely because this discrete symmetry is broken in the original bosonic system.

As an explicit example of this, consider the casem = 1, for whichB1 = (−1)N , (B1)
2 =

I and is aZ2 symmetry. With respect to this operator,H consists of both even (|2n〉) and odd
(|2n+ 1〉) states. The fermionic operatorsa1

0 are, however, constructed fromP 1
1 only. P 1

0
was not, and could not, be used or else the original Hilbert space would be reproduced.B1-
parity is explicitly broken and we find that the one fermion state(a1

0)
†|�〉10 is odd underB1.

It has statistics phase of−1, as expected. Also, if we identifyH with the one-dimensional
simple harmonic oscillator, thenB1

1 also functions as the usual parity operator. Equivalently,
fermions appear in the bosonic system due to parity being broken. This breaking of parity
is a well known effect for anyons. Unfortunately, due to its complex eigenvaluesBm does
not have a physical interpretation form > 1.

To conclude, we have constructed the creation and annihilation operators forg-ons;
particles which obey Haldane’s exclusion statistics. This was done using the usual bosonic
creation and annihilation operators without any reference to a specific spacetime dimension.
Physically,g-ons appear in the bosonic system as the result of the breaking of a discrete
symmetry. Moreover, as the construction explicitly used the braid operatorBm whose
eigenvalues consist of abelian representations of a braid group, we have established a link
between Haldane’s exclusion statistics, fractional statistics, the braid group and anyons.
Indeed, takingg = 1/m we have found thatg-ons have a statistics phase of e2π ig/(g+1),
and have finite-dimensional Hilbert spaces, precisely as one would expect for anyons.
Consequently, denoting the usual statistics phase of an anyon by eπ iα, we can identify
α(g) = 2g/(g+ 1)+ 2q, whereq is any integer. With the appropriate choice ofq, we can
always reduceα to lie within 06 α 6 0. With this restriction,

α(g) = 2g/(g + 1) (16)

which has the correct limiting values atg = 0, 1 for bosons and fermions, respectively.
Because in our approachg = 1/m, 0 6 g 6 1 and from equation (16) we find that
06 α 6 1.



6182 A D Speliotopoulos

Murthy and Shanker [11] have also shown that anyons obey exclusion statistics. In
their analysis a partition function forg-ons was constructed using equation (2) which was
generalized to infinite-dimensional Hilbert spaces. A virial expansion is then performed on
this partition function andg is shown to be very simply related to the second virial coefficient
in the high temperature limit. Since the second virial coefficient has been calculated for the
anyon gas [29], they find that

gms = αms(2− αms). (17)

Inverting this equation, one finds thatαms = 1±√1− gms . Forαms to be real, 06 gms 6 1
and in this range, either 06 αms 6 1 or 16 αms 6 2. Although the range of bothgms and
αms are similar to our result (16), equation (17) is different from our result. Their result
was obtained via a virial expansion and, as they have pointed out, is valid for a general
anyon gas only ifall the virial coefficients are finite for the anyon gas, a result which is
not yet known. Our results would seem to suggest that either these virial coefficients are
not finite, or else the relationship they derived is valid only in the high temperature limit
nearαms = 0, 1 whenα ≈ αms .

Traditionally, anyons have been associated with two dimensions where the homotopy
classπ1(Mn) on the configuration spaceMn of n hard core particles is non-trivial. The
intertwining worldlines of these particles in the Feynman path integral formalism form a
representation of the abelian braid group. By using operator instead of path integral methods
to realize the braid group we have extended the notion of anyons to arbitrary dimensions.
There is, however, a fundamental difference in the two approaches. In our approachg-ons
appear because an underlying discrete symmetry of the bosonic Hilbert space isbroken,
while in the standard description anyons are present precisely because the braid group is
a fundamental symmetry group which isnot broken. This may also be the cause of the
differences between ourα(g) andαms(g). It would also be interesting to see if this symmetry
breaking can occur dynamically instead of by hand as we have done.
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