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Abstract. Motivated by Haldane’s exclusion statistics, we construct creation and annihilation
operators forg-ons using a bosonic algebra. We find tlgabns appear due to the breaking of
a discrete symmetry of the original bosonic system. This symmetry is intimately related to the
braid group and we demonstrate a link between exclusion statistics and fractional statistics.

In 1991 Haldane proposed that excitations which obey fractional statistics may exist in
certain condensed matter systems even in dimensions other than two [1]. This was based
on his observation that such excitations are present in the Calogero—Sutherland model [2—4].
For these excitations, which were dubbgdons’ by Nayak and Wilczek [5], he proposed

that the number of available one-particle states changes with increasing occupation of the
state. Namely, ifZ is the number of one-particle states available for the particleMris

its occupation number, then

Ad = —gAN (1)

where g determines the statistics of the particle. Since the number of one-particle states
for bosons does not change wit, ¢ = 0 for bosons. For fermions, on the other hand,
the number of available one-particle states decreases by one with the addition of even one
fermion, giving ag = 1. This definition of statistics has the advantage of making no specific
reference to the dimensionality of the system which is being studied while the usual notion
of fractional statistics is often made in reference to anyons [6] which traditionally have only
been present in two spatial dimensions. We also note that excitations which have ‘fractional
charge’ have had a long history in both high energy physics and condensed matter physics.
An explicit example of such excitations can be found in the massive Thirring model in
two dimensions [7]. Moreover, the notion of particles having fractional charge and obeying
parastatistics have been postulated in high energy physics in connection with the quark
model of hadrons since the 1960s (see [8] for a thorough review).

Since Haldane's work there have been a number of papers advancing his ideas [5, 9—15]
using thermodynamic arguments. This was done primarily by using the second of Haldane’s
proposals: that the dimensionality of the Hilbert spacevog-ons is
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Applying the ground breaking work of Yang and Yang [16] who first noticed that the number
of available one-particle states can differ depending on dynamics, equation (2) was used
to construct a partition function fog-ons. (See also [17] for a review of this technique

as applied to Haldane’s fractional statistics.) This was then compared with the partition
function of various known systems. Using this argument Murthy and Shanker [11] were
able to show that anyons also obey exclusion statistics.

In another approach, Karabali and Nair [18] have recently attempted to use operator
methods to realize exclusion statistics algebraically (see also [19] and [20]). Specifically,
they proposed the existence of creation and annihilation operatasd a' for g-ons
by requiring thata”*! = 0. The resultant Hilbert space is therefore finite-dimensional
containing at mostn possible occupation states. As the system looses a one-particle
Hilbert space as soon as the occupation number for the state changes oy 1/m.
Although m(1/g) is necessarily an integer, since Nayak and Wilczek have shown that the
thermodynamical distribution functions fgrand /g are related by a duality property, this
limitation does not seem to be to troublesome. Of greater concern is that since a specific
representation of these operators was not known, the resulting commutation relatiéns for
anda’ could not be determined uniquely.

In this paper we shall extend Karabali and Nair’s analysis by constructing explicitly the
creation and annihilation operators fgrons using a bosonic algebra. Sinc€l#2)-on is
a fermion, as a byproduct of our analysis we have a procedure for changing a boson into
a fermion (or in general g-on). Turning bosons into fermions or fermions into bosons,
the process of bosonization, is well-known in field theory ([21-24]; see also [25]). Instead
of using the normal field theoretic methods, however, we use the bosonic number operator
to define an operator whose eigenvalues are abelian representations of the braid group,
commonly identified as the ‘statistics phases’ for anyons [6]. Projection operators are then
constructed which project states of the bosonic Hilbert sfdciato states with definite
statistics phase. These projection operators are then used to defigeothereation and
annihilation operators. We shall further see from this construction ghatts appear in
the bosonic system as the result of the breaking of a discrete symmetry of the original
bosonic Hilbert space. In the spirit of Haldane’s original work, this analysis is ddtheut
reference to any specific spacetime dimension.

Some of the techniques of this paper have previously been applied in various forms to
different systems. Brandt and Greenberg [26] have used a similar technique to construct
generalized bose operators which change the occupation number of a state by any positive
integer. Agranovich and Toshich [27] used a similar method to construct creation and
annihilation operators for Paulions, which was later generalized by llinskaia and Ilinski
[28].

Denoting the usual bosonic operatorscbgnda’ and their number operator by = a'a,
we begin with the unitary operator

2ri
B, = ex N 3
p(m +1 ) ®)
wherem is a non-negative integer. One can easily show that
BnaBl = e 2m/mtl, Ba'Bl = ei/mtD gt (4)

Consequently,d, Bg] = 0 = [af, Bg], and By commutes with every operator in the algebra
generated by: andaf. It is therefore (a Casimir operator) proportional to the identity
operator I. Since the eigenvalues 8f are the non-negative integers, this proportionality
constant is simply unity. This is a special case of the more general resufi(xjfis a
periodic, analytic function, theru[ f(N)] =0 and f(N) = f(O)l.
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Now considerB,, for m > 0 which has eigenvalues
ez;zij/(erl) (5)

that are then + 1 roots of unity. Since only the ratig/(m + 1) matters, it is understood
from now on that 0< j < m. It is also known that for a fixed value of/(m + 1),
equation (5) is a one-dimensional (abelian) representation of the braid gréuipifeone
identifiesv = —2j/(m+1) [6] (up to an even integer). In this context, equation (5) is often
also called the ‘statistics phase’ of an anyon. Consequently, we shaBgahe quantum
braid operator.

Next, B,|j + (m + 1)g) = €7/™+D|j 4 (m + 1)q), where|n) is a state inH and
g > 0 is an arbitrary integer. The bosonic Hilbert sp&¢as also spanned by eigenstates
of B,,. These states can be isolated by using the projection operators

1 & 2rik
Pm == — — 7
J m+1k=OeXp<m+1(N J)> ©

which have the properties

m
mt _ pm mpm __ pm m __
P = P! PP = P"8; ;:Pj = @)
J=
and ij:l:(m+l) =PIt is easily seen than’”ln + (m + Dgq) = §jqln + (m + 1)g) and
the original Hilbert space decomposes iffto= Ho @ --- ® H,,. Each state ir{; is an
eigenstate oB,, with eigenvalue (5) and has a definite statistics phase.
We then useP to form the composite operators

= mt T

ej'-" = anm e = Pj’”a (8)
where 0< j < m. Using equation (4),

Pl'a=aPj, ijaT = aTP.inil ©)
and we find that

m _m f 1 i

elel =ef'el’ 18 i1 eZ‘Te;-ﬂJr = e;"ile;"r(Sk,Hl {ef', el } =T["5;x

(7", "] =0 (10)
while

[ Tiad =+ N L T = N ay

and i ;"] =0 for |j — k| # 1. N = ej'.“e;?’, N = Z; N and [N¢, T,"] = 0. Written
in this way the original background bosonic operators do not explicitly appear, the algebra
closes and no other operators need to be introduced. Tdfesell be used to construct
the creation and annihilation operators fprons and their resultant Hilbert spaces. To
demonstrate that the commutation relations (10) are sufficient to determigeotiélilbert
space up to an overall constant, we shall make no further reference to the underlying bosonic
algebra.

In general, the creation and annihilation operatgtsand a}"T for (¢ = 1/m)-ons are

defined by

m

al =Y ey (12)

k=1
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and we see tha(ta”’)’”+1 0. The (1/m)-on Hilbert space isn-dimensional and spanned
by the states

mt m
@y i)

|P)j - - (13)
\/AJH ma+D. L+ p— D)
for 1 < p < m with the ground state beinm);”. They are eigenstates of thjg/m)-on
number operatoN’" with elgenvaluesk"ﬁrl + p, as well as of741p)} A}"H(Sp 1p)7.
Once againA? , > 0 is an arbitrary constant which, becauﬁqlm = 1|Q)

ultlmately depends on the ground state of the system. For the underlylng bosonlc Hilbert
space)r} ; = j+ 1+ (m+1)g.

Form = 1, we have only the one operat@} = 7. Then from equation (10)a3)? = 0
and {a}, al'} = T1. Since, however,d, T1] = 0, if we restrict ourselves to only those
operators and Hilbert space generatedafyand aé'[', then T is once again a multiple of

the identity which can be set to unity by re-scaligyg af anda} 1 therefore obey the usual
fermionic anticommutatiomelations and generate a fermlomc Hilbert space.

Even though we still have the operate}, no other interesting operator can be
constructed form = 1 aside for the trivial replacement ef < . Onceej is also
included in the sub-algebra the complete bosonic Hilbert space will be reconstructed as can
be seen from the completeness relation in equation (7). We will no longer be projétting
into a sub-Hilbert space with a definite statistics phase. This is a reflection of the very well
known result that forn = 1 the statistics phase 51 and only fermions or bosons can be
present.

Form = 2 we construct the creation and annihilation operatorg¥g2)-ons by taking,
for an arbitrary but fixedj

a.2 = e 41+ e (14)
(a2)3 = 0, as can easily be seen from the commutation relations. To construct the Hilbert
space, we tak¢§2) as the ground state. It is an eigenstate of bﬁﬂl and T +2 with
elgenvalues?tz+1 and A +2, respectively. This is possible because both these operators

commute among themselves as well as méZ)-on number operatoN? = JZTa2 Then,

because-? +2e +1 = 0, one can show that?,, = 0. The (1/2)-on Hilbert space is then
spanned by the normalized states

2T 212132
a’ Q)4
|Q>j? ) ﬂ (15)
)‘;2+1 VAaGia+ D

They are eigenstates of? = aztaz with eigenvalues 037 ; and A%, + 1, respectively,

J
and of 77, with elgenvaluea +1,A?+1, and 0. The constarit? ;, > O itself cannot be
determlned by equation (10) alone. However, using the underlying bosonic Hilbert space
we find thatA?,; = j + 1+ 3¢.

In them — oo limit, equation (12) becomes an infinite sum, and we find (h%t)’ #0
for any finite /. Using standard arguments we can show tinjatl = 1 and we simply
recover the usual bosonic algebra and Hilbert space. This can also be seen heuristically
from equation (5), by looking at the spectrum B, for finite m and takingm — oo. We
therefore identifyB,, = | and note thatBy = B,

B, |p)™ = €7ir/+D| pym for a B, invariant ground state. Eadll/m)-on occupation
state is an eigenstate of the braid operator with the state contairgftihe (1/m)-ons having
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a statistics phase?8?/™+1 . Each (1/m)-on thereby has a statistics phase &f/&"+9.
Form = 1 this is just—1, as expected for fermions, while far — oo it is 1, as expected
for bosons.

We can understand the physics behind this constructigrafs by using the following
symmetry arguments. We first introduce the notion Byf-parity, which like the usual
parity P is a discrete symmetry and is generated By. Since, howeverB"+l = |,
the eigenvalues oB,, are in general complex whil® is a Z, symmetry. The original
bosonic system is, of course,,-parity invariant andH itself is spanned by states with
definite B,,-parity. In the construction of thg-on operators:’”, a]’?”, however, only the
projection operator®”,,, ..., P/}, were used.P”" itself was purposely left out. In effect,
aj' represents the projection of any bosonic state inte-dimensional subspace spanned
by these projection operators after whighis applied. B,,-parity is explicitly broken by
hand and the statdg + (m + 1)q) that P projects into forms the ground state)”" for
the g-on Hilbert space. The choice of ground state for ghens is not unique and there are
an infinite number of ground states which can be used to generate the Hilbert space, each
corresponding to a different?’, ;. These ground states anet equivalent, however, since
the eigenvalues oN* areA™ ; are dependent.

Since the eigenvalues &, are in general complexg,, is not a physical observable for
m > 1. Its effect on the bosonic Hilbert space is nevertheless dramatic and observable. The
breaking of this discrete symmetry reduces the infinite-dimensional bosonic Hilbert space
into the finite-dimensionag-on Hilbert space. Indeed, the presenceains in the system
occurs precisely because this discrete symmetry is broken in the original bosonic system.

As an explicit example of this, consider the case= 1, for whichB; = (—1)V, (B1)? =
| and is aZ, symmetry. With respect to this operatt,consists of both evendr)) and odd
(12n + 1)) states. The fermionic operatazg are, however, constructed frofy only. Pg
was not, and could not, be used or else the original Hilbert space would be reprodeed.
parity is explicitly broken and we find that the one fermion stafg )3 is odd underB;.

It has statistics phase efl, as expected. Also, if we identifit with the one-dimensional
simple harmonic oscillator, theBy also functions as the usual parity operator. Equivalently,
fermions appear in the bosonic system due to parity being broken. This breaking of parity
is a well known effect for anyons. Unfortunately, due to its complex eigenvahjedoes

not have a physical interpretation fer > 1.

To conclude, we have constructed the creation and annihilation operatogsoius;
particles which obey Haldane’s exclusion statistics. This was done using the usual bosonic
creation and annihilation operators without any reference to a specific spacetime dimension.
Physically, g-ons appear in the bosonic system as the result of the breaking of a discrete
symmetry. Moreover, as the construction explicitly used the braid opemjowhose
eigenvalues consist of abelian representations of a braid group, we have established a link
between Haldane’s exclusion statistics, fractional statistics, the braid group and anyons.
Indeed, takingg = 1/m we have found thag-ons have a statistics phase f'&/¢+D,
and have finite-dimensional Hilbert spaces, precisely as one would expect for anyons.
Consequently, denoting the usual statistics phase of an anyorf'hyvee can identify
a(g) = 2g/(g +1) + 2q, wheregq is any integer. With the appropriate choicegofwe can
always reducer to lie within 0 < o < 0. With this restriction,

a(g) =2g/(g+1) (16)

which has the correct limiting values gt= 0, 1 for bosons and fermions, respectively.
Because in our approach = 1/m,0 < g < 1 and from equation (16) we find that
O0<a <l
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Murthy and Shanker [11] have also shown that anyons obey exclusion statistics. In
their analysis a partition function fgr-ons was constructed using equation (2) which was
generalized to infinite-dimensional Hilbert spaces. A virial expansion is then performed on
this partition function ang is shown to be very simply related to the second virial coefficient
in the high temperature limit. Since the second virial coefficient has been calculated for the
anyon gas [29], they find that

8ms = Ums (2 — Q). (17)

Inverting this equation, one finds that, = 1+./1 — g,,;. Fora,, to be real, 0< g,.s <1

and in this range, either § «,,; < 1 or 1< «,,; < 2. Although the range of botp,, and

o,y are similar to our result (16), equation (17) is different from our result. Their result
was obtained via a virial expansion and, as they have pointed out, is valid for a general
anyon gas only ifall the virial coefficients are finite for the anyon gas, a result which is
not yet known. Our results would seem to suggest that either these virial coefficients are
not finite, or else the relationship they derived is valid only in the high temperature limit
neara,,, = 0, 1 whena ~ .

Traditionally, anyons have been associated with two dimensions where the homotopy
classmi(M,) on the configuration spac¥, of n hard core particles is non-trivial. The
intertwining worldlines of these particles in the Feynman path integral formalism form a
representation of the abelian braid group. By using operator instead of path integral methods
to realize the braid group we have extended the notion of anyons to arbitrary dimensions.
There is, however, a fundamental difference in the two approaches. In our apgroash
appear because an underlying discrete symmetry of the bosonic Hilbert splickes
while in the standard description anyons are present precisely because the braid group is
a fundamental symmetry group which n®t broken. This may also be the cause of the
differences between out(g) ando,,;(g). It would also be interesting to see if this symmetry
breaking can occur dynamically instead of by hand as we have done.
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